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Abstract A bacterium isolated from microbial mats

located on a polynesian atoll produced a high molecular

weight (3,000 kDa) and highly sulphated exopolysaccha-

ride. Previous studies showed that the chemical structure of

this EPS consisted of neutral sugars, uronic acids, and high

proportions of acetate and sulphate groups. The copper-

and iron-binding ability of the purified pre-treated native

EPS was investigated. Results showed that this EPS had a

very high affinity for both copper (9.84 mmol g-1 EPS)

and ferrous iron (6.9 mmol g-1 EPS). Amazingly, this EPS

did not show any affinity for either ferric ions or selenium

salts. This finding is one of the first steps in assessing the

biotechnological potential of this polysaccharide.
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Introduction

Polysaccharides occur as important constituents of plant and

microbial cell walls, either as storage polysaccharides or as

biopolymers secreted by microorganisms known as exo-

polysaccharides (EPS). Bacterial polysaccharides possess a

wide variety of properties that may not be found in the more

traditional polymers of plant origin. Although they compete

with polysaccharides from other sources, e.g., from algae

(alginates, carrageenans), crustacea (chitin) or plants, their

production is less subject to variability due to marine pol-

lution, crop failure or climatic impact [11, 15, 24].

Due to their many interesting physical and chemical

properties, e.g., stabilizing, suspending, thickening, gelling,

coagulating, film-forming and water retention capability,

polysaccharides have found applications in many industrial

sectors, e.g., those producing detergents, textiles, adhesives,

paper and paint, the food and beverage industries, and those

involved with pharmaceuticals and cancer therapy, drug

delivery, oil recovery and metal recovery in the mining

industry and from industrial wastes [3, 5, 12, 22, 25].

Heavy metals are known to be essential for almost all

kinds of living organisms, but excessive concentrations can

lead to severe health problems. Biosorption of heavy and/or

radioactive metals can be considered as an alternative

technology able to compete with other conventional tech-

nologies, such as chemical precipitation, electrolytic

methods, adsorption on activated carbon, membrane pro-

cesses and ion exchange using different chelating resins

and fibers [26, 27]. Bacterial EPSs contain ionizable

functional groups, such as carboxyl, amine, sulphate, ace-

tate, and hydroxyl groups, which enable these polymers to

bind heavy metals.

In the French Polynesian atolls, microbial mats develop

in water ponds exposed to salinity fluctuation and high
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Institut Français de Recherche pour l’Exploitation de la Mer,

BIOMAR/BMM, Centre de Brest,

Plouzané, France
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solar irradiation. These microbial mats, which are called

‘‘kopara’’ by the inhabitants of Tuamotu archipelago, are

mainly composed of cyanobacteria and eubacteria, and

contain large amounts of polysaccharides [16]. These

exopolysaccharides preserve the integrity of the mat, pre-

vent dessication and maintain cell hydrophobicity [2, 23].

They also are involved in the precipitation of carbonates

[6, 7]. Since 2001, this ecosystem has been screened for

innovative biomolecules, including novel microbial exo-

polysaccharides secreted under laboratory conditions by

both bacteria and cyanobacteria [20, 21].

A marine bacterium (strain RA19), isolated from a

microbial mat in Rangiroa atoll and belonging to the

Paracoccus family, produced an EPS under laboratory

conditions. This strain, P. zeaxanthinifaciens subsp.

payriae, has been deposited in the Collection Nationale

de Culture de Microorganismes (Institut Pasteur, Paris,

France) as strain CNCM I-2926 [19]. The crude chemical

composition included approximately 48% (w/w) neutral

sugars, 8% (w/w) uronic acid, 8% (w/w) acetate and 27%

(w/w) sulphate [19]. This study was conducted to investi-

gate the ability of EPS produced by strain RA19 to bind

heavy metals, such as copper and iron, as a first step in

assessing the biotechnological potential of this EPS.

Materials and methods

In November 2001, samples of ‘‘kopara’’ were collected

from the different microbial mats located on the atoll of

Rangiroa. Enrichment cultures were purified on marine

agar 2216E (MA, Difco Laboratories, Detroit, MI).

Strain RA19 was selected because of its ability to exhibit

a swarming mucoid phenotype on marine agar 2216E

supplemented with 30 g l-1 of glucose along with a

pigment further identified as pure all-trans-zeaxanthin

[19].

Growth conditions

The optimal temperature for growth was between 30 and

35�C, the optimal pH was between 6.5 and 7.5, and the

optimal ionic strength was between 20 and 40 g l-1 of

NaCl. The doubling time, under optimal conditions, was

35 min [19].

Isolation and purification of EPS

Exopolysaccharide production was performed at 30�C in a

2-l fermenter (New Brunswick, Toulouse, France) con-

taining 1 l of 2216E-glucose broth. A batch of culture

medium was inoculated at 10% (v/v) with a suspension of

cells in exponential phase. The pH was adjusted and

maintained at 7.6 by automatic addition of NaOH

1 mol l-1. Foaming was avoided by addition of Pluronic-

PE6100 oil (BASF, Levallois/Perret, France) at 0.1% (v/v).

The air flow was fixed at 30 l h-1 and the agitation rate

from 200 to 400 rpm in order to maintain the level of

dissolved O2 at around 25%.

The water-soluble exopolysaccharide was recovered

from the culture medium by high-speed centrifugation

(20,000g for 2 h) after 4 days, then purified by ultracen-

trifugation against deionized water using a Pellicon-2 Mini

Holder equipped with a Biomax 100 K filter (Millipore

Corporation, Bedford, MA) and lyophilized prior to further

analysis.

Metal-binding experiments

Purified exopolymer was dissolved in milliQ water.

Preliminary experiments were conducted with EPS

concentrations up to 1 mg ml-1 according to protocols

described by Loaec et al. [13, 14]. Later, this concentration

was reduced to 0.1 mg ml-1 when problems in the meth-

odology were attributed to the high viscosity of the

polysaccharide in solution. Metals tested were copper, iron

and selenium. Solutions of copper were prepared from

anhydrous Cu(SO4)2. Solutions of ferrous and ferric iron

were prepared from FeSO4�7H2O and Fe2O12S3�H2O,

respectively, while the assays for selenium were performed

with Na2SeO3, SeO2, H2SeO3 and Na2SeO4.

Reaction solutions were prepared in duplicate by adding

40 ml of EPS solution to a 250-ml flask containing 10 ml

of metal solution for a final concentration of 0.1 mg ml-1

EPS and metals in the range of 10–1,000 mg l-1. The total

sample volume was 50 ml. Samples were mixed thor-

oughly for 3 h at 200 rpm.

Metal uptake capacity was determined using the general

equation [26]:

q ¼ ðCi � CeqÞV
m

where Ceq is the final metal concentration and Ci the initial

metal concentration in solution of volume V, and m the

mass of exopolysaccharide.

Appropriate blanks were examined throughout the

sorption experiments to insure the absence of glassware

sorption of metals and other potential side effects.

Metal analyses

After incubation, the pH of filtrates was reduced at 1.5 with

concentrated nitric acid, and the metal concentration was

determined by atomic absorption spectrometry or induc-

tively coupled plasma spectrometry. All assays were run in

triplicate.
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FT-IR spectroscopy

Pellets for infrared analysis were obtained by grinding a

mixture of 2 mg polysaccharide with 200 mg dry KBr,

followed by pressing the mixture into a 16-mm-diameter

mold. The Fourier transform-infrared (FT-IR) spectra were

recorded on a Bruker Vector 22 instrument with a resolu-

tion of 4 cm-1 in the 4,000–400 cm-1 region.

Scanning electron microscopy

Samples for scanning electron microscopy (SEM) analysis

were glued to aluminium stubs, gold-sputtered, and

examined using a Philips XL 30 operating at 30 kV. EDAX

analysis (EDAX Edx 4i) was carried out on non-gold-

coated specimens.

Results and discussion

Chemical composition of EPS

The exopolysaccharide produced under laboratory condi-

tions by strain RA19 is mainly composed of neutral sugars

48% (w/w), while hexuronic acids only accounted for 8%

(w/w) [19]. Acetate groups accounted for 8% (w/w) of the

total EPS. But the major feature of this bacterial EPS was

its high amount of sulphate (27%) (w/w). Highly sulphated

bacterial EPS are rare in nature, making this exopolymer

different from others. Sulphate groups play an important

role in the biological activities of microbial polysaccha-

rides. For several years, there has been growing interest in

the recognition of biological activities of microbial poly-

saccharides [30]. The anticoagulant activity of some

bacterial polymers has to be linked to the high sulfate

content associated with specific chemical composition

[17, 28].

Heavy metal binding capacity

Light cations, including K, Na, Mg and Ca, are usually

present in the crude exopolysaccharide due to both the

medium culture and the extraction procedure. These metals

were first eliminated by treatment with a cationic exchange

column (Dowex 5098) followed by an ultrafiltration. The

biopolymer was then saturated with a single counter ion

(Li?) to ensure homogeneity of the cationic composition

for all experiments. Complete elimination was achieved

following this pre-treatment (Table 1).

The initial pH for copper sorption ranged from 4.5 to 5

and remained stable throughout the experiments. Initial pH

for ferrous ion sorption was in the same range, but a slight

deposit of iron oxyhydroxyde (FeOOH) was observed in

the medium at the end of preliminary experiments. The pH

was then adjusted to pH 3, and all experiments were con-

ducted under nitrogen to ensure the formation of such

deposits.

Equilibrium sorption isotherms for copper and iron

(Fe?II) by EPS of P. zeaxanthinifaciens. subsp. payriae

(RA19 EPS) are shown in Fig. 1. Sorption isotherms rep-

resent the equilibrium distribution of metal between the

aqueous and the gel phase versus metal concentration. The

sorption increases with the initial metal concentration as

long as binding sites are not saturated. Thus, it can be

hypothesized that metal accumulation by RA19 EPS is a

chemical, equilibrated and saturable mechanism for both

copper and iron (Fe?II).

The results are presented on both the basis of mass (mg)

uptake per gram EPS and on a molar basis (mmol g-1 EPS).

Copper uptake reached 625 mg g-1 EPS (9.84 mmol g-1

EPS), while iron (Fe?II) uptake was lower with an uptake of

385 mg g-1 EPS (6.9 mmol g-1 EPS). Thus, the dissocia-

tion constant Kd was 54.37 mg l-1 (0.85 mmol l-1) for

copper and 32.6 mg l-1 (0.58 mmol l-1) for iron (Fe?II).

Experiments were also conducted with ferric ions using

Fe2O12S3�H2O salts. Due to the formation of a significant

amount of FeOOH, the pH of the solutions was lowered to

1.8. Under such conditions, no significant and reproducible

metal uptake was observed for this polymer. The pH of the

solution strongly affects the sorption capacity of this

Table 1 Percentage of light cations in EPS produced by strain RA19

(P. zeaxanthinifaciens subsp. payriae) (%, w/w)

EPS RA19 Na? K? Ca2? Mg2?

Native state 3.73 0.48 1.88 1.27

Pre-treatment \0.01 \0.01 \0.01 \0.01
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Fig. 1 Equilibrium sorption isotherms of copper and iron (Fe?II) by

RA19 EPS (3 h, room temperature). Standard deviations of triplicate

measurements are smaller than symbol diameters
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polymer. In strongly acidic solutions, protons compete with

metal ions and are more available to protonate carboxyl

groups then reducing the number of binding sites for ferric

ions. In addition, degradation of the polymer occurred after

3 h at such low pH.

Experiments conducted with different selenium salts and

under different pH conditions did not lead to any uptake of

these ions by this EPS in its native state. Additional

experiments will be conducted with partially depolymer-

ized or deacetylated RA19 EPS in order to explain the

absence of sorption by this biopolymer [8, 9].

These results have to be compared to other natural

biosorbents. The value of Q derived from the Langmuir

isotherm equation was up to 625 mg g-1 EPS, and this

value was much higher than the observed capacities or the

estimated Q values by other natural bacterial or modified

exopolysaccharides and biomasses as well reported so

far in the literature. Maximum copper uptake up to

323 mg g-1 EPS was reported for zooglane, a polysac-

charide produced by Zoogloea ramigera [18].

Iron uptake was also higher than for any bacterial

polysaccharide reported in the literature. Maximum uptake

was observed with the cell walls of Bacillus subtillis

(201 mg g-1 compared to 385 mg g-1 for RA19 EPS).

The capacity of chitosan and cross-linked chitosan to

adsorb ferrous ions did not exceed 64 mg g-1 [29], while

Brierley and Brierley [4] related a Fe?II retention capacity

of 107 mg g-1 by bacterial biomass.

Interestingly, up to initial concentrations of 500 and

300 mg l-1 of copper and ferrous iron, respectively, the

removal efficiency was near 100% (w/w). For higher

concentrations, a significant decrease in the metal uptakes

can be observed.

Scanning electron microscopy

Biosorption of both copper and iron salts by RA19 EPS

induces change in the conformation of the polymer with the

formation of microspheres up to 3 lm diameter (Fig 2).

Microanalysis performed on these microspheres indicated

large concentrations of metal ions up to 70% (w/w).

FTIR study

Infrared spectroscopy has proven to be a powerful tool for

studying biological molecules and for obtaining informa-

tion about metal-EPS binding. Figure 3 shows the FTIR

spectra of Li-treated RA19 EPS before and after binding

experiments with either copper or iron (II). Analysis of

the FTIR spectrum of the pre-treated polysaccharide

showed intensive bands in the range of 3,700–3,200 cm-1,

corresponding to the stretching band of v OH of polysac-

charides. The FTIR spectrum also exhibited an intense

band at 1,640 cm-1 along with an absorption peak at

1,740 cm-1, corresponding to the stretching band of the

free carboxyl double bond from the functional carboxylic

groups present in this biopolymer. The doublet at 1,230–

1,250 cm-1 corresponded to the presence of ester sulphate

groups present in a large proportion in this polymer.

Complexation with either copper or iron induced dif-

ferent shifts in the wave numbers corresponding to specific

vibrational modes of native exopolysaccharide. The most

Fig. 2 Scanning electronic

microscopy photography of

a native RA19 EPS; b RA19

EPS–Cu; c, d RA19 EPS–Fe
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important differences in the vibrational spectra of the

copper complexes seem to occur for the broad absorption

peaks in the region of 3,200–3,700 cm-1 assigned to the

existence of hydroxyl groups involved in the H-bond

network. Neither the copper nor the iron ions induced

significant shifts in the vibration bands associated with

carboxylic and sulphate groups as well.

The heavy metal-binding capacity of polysaccharides is

usually attributed to the high hydrophilicity of the polymer

due to the presence of hydroxyl groups, the presence of

functional and reactional groups (sulphate, acetamino,

primary amino and ester groups) and the flexible structure

of the polymer chains. RA19 EPS is characterized by high

proportions of sulphate (27% w/w of the total sugar) and

significant amounts of acetate groups (up to 8% of the total

sugar). It is widely accepted that carboxylic groups from

either uronic acids or non-sugar substituents are responsi-

ble for the metal-binding capacity of EPS specifically in pH

solutions ranging from 4 to 5. However, comparison

between different bacterial EPSs has clearly demonstrated

that metal uptake capacities are not proportional to the

concentration of uronic acids and carboxylic groups [13].

From our data, it can be hypothesized that hydroxyl groups

are probably involved in the chelation of copper and iron

by RA19 EPS as oxygen atoms from these groups could be

weak donors [1].

The role of sulphate groups in the metal-binding

capacity of polysaccharides is controversial [10, 14].

Despite the very high content in sulphate of EPS RA19,

neither copper ions nor ferrous ions seemed to affect the

vibrational bands of sulphonate groups. Conversely, sul-

phate groups are known to be involved in the overall

uptake of trivalent ions, such as ferric ions. In our

experiments, low Fe?III sorption was observed with this

highly sulphated polysaccharide.

Conclusion

Human activities have released large amounts of toxic

elements that can be harmful to human beings into the

environment. Biosorbents and primarily exopolysaccha-

rides can act as substitutes to other technologies. The EPSs

produced under laboratory conditions by the strain isolated

from a microbial mat show a very high binding capacity for

both copper and iron salts. This finding could be the first

step in the development of a low cost biosorbent used in its

native state or as modified polysaccharide-based materials.
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